Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16044-16054, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617688

RESUMO

Consumption of alcohol has widespread effects on the human body. The organs that are most significantly impacted are the liver and digestive system. When alcohol is consumed, it is absorbed in the intestines and processed by the liver. However, excessive alcohol use may affect gut epithelial integrity, microbiome composition, and lipid metabolism. Despite past studies investigating the effect of ethanol on hepatic lipid metabolism, the focus on colonic lipid metabolism has not been well explored. In this study, we investigated the sex-specific effect of ethanol on the colonic content lipidome in a mouse model using nontargeted liquid chromatography-mass spectrometry. Comprehensive lipidome analysis of colonic flush samples was performed using ethanol-fed (EF) and pair-fed (PF) mice of each sex. Partial least-squares discriminant analysis revealed that ethanol altered colonic lipid composition largely in male mice compared with female mice. A significant increase in free fatty acids, ceramides, and hexosylceramides and decreased phosphatidylglycerols (PG) was observed in the EF group compared to the PF group in male mice. Phosphatidylethanolamine (PE) levels were increased significantly in the EF group of both sexes compared to the PF group. The volcanic plot shows that PG (O-15:1/15:0) and PE (O-18:2/15:0) are common markers that are increased in both sexes of the EF group. In addition, decreased fatty acid esters of hydroxy fatty acids (FAHFA) were observed specifically in the EF group of female mice. Overall, a significant variation in the mice colonic content lipidome between the EF and PF groups was observed. Target pathways, such as sphingolipid metabolism in males, FAHFA in females, and PE metabolism in both sexes, were suggested. This study provides new insight into the sex-dependent lipid change associated with alcohol-induced gut-microbiota dysfunction and its potential health impacts.

2.
Food Res Int ; 184: 114253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609231

RESUMO

Sea cucumbers are a rich source of bioactive compounds and are gaining popularity as nutrient-rich seafood. They are consumed as a whole organism in Pacific regions. However, limited data are available on the comparison of their lipid composition and nutritional value. In this study, untargeted liquid chromatography/mass spectrometry was applied to comprehensively profile lipids in the skin, meat, and intestinal contents of three color-distinct edible sea cucumbers. Multivariate principal component analysis revealed that the lipid composition of the intestinal contents of red, black, and blue sea cucumbers differs from that of skin, and meats. Polyunsaturated fatty acids (PUFAs) are abundant in the intestinal contents, followed by meats of sea cucumber. Lipid nutritional quality assessments based on fatty acid composition revealed a high P:S ratio, low index of atherogenicity, and high health promotion indices for the intestinal contents of red sea cucumber, suggesting its potential health benefits. In addition, hierarchical cluster analysis revealed that the intestinal contents of sea cucumbers were relatively high in PUFA-enriched phospholipids and lysophospholipids. Ceramides are abundant in black skin, blue meat, and red intestinal content samples. Overall, this study provides the first insights into a comprehensive regio-specific profile of the lipid content of sea cucumbers and their potential use as a source of lipid nutrients in food and nutraceuticals.


Assuntos
Pepinos-do-Mar , Animais , Ceramidas , Análise por Conglomerados , Suplementos Nutricionais , Ácidos Graxos
3.
Food Chem ; 447: 138941, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38461726

RESUMO

Herbal teas and beverages have gained global attention because they are rich in natural bioactive compounds, which are known to have diverse biological effects, including antioxidant and anticarcinogenic properties. However, the lipidomic profiles of herbal teas remain unclear. In this study, we applied an untargeted lipidomics approach using high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry to comprehensively profile, compare, and identify unknown lipids in four herbal teas: dokudami, kumazasa, sugina, and yomogi. A total of 341 molecular species from five major classes of lipids were identified. Multivariate principal component analysis revealed distinct lipid compositions for each of the herbs. The fatty acid α-linolenic acid (FA 18:3) was found to be abundant in kumazasa, whereas arachidonic acid (FA 20:4) was the most abundant in sugina. Interestingly, novel lipids were discovered for the first time in plants; specifically, short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) with 4-hydroxy phenyl nonanoic acid as the structural core. This study provides insight into the lipidomic diversity and potential bioactive lipid components of herbal teas, offering a foundation for further research into their health-promoting properties and biological significance.


Assuntos
Chás de Ervas , Chás de Ervas/análise , Cromatografia Líquida de Alta Pressão/métodos , 60705 , Bebidas/análise , Lipidômica/métodos
4.
Anal Chim Acta ; 1288: 342145, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220280

RESUMO

Short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs) are a new class of endogenous lipids belonging to the fatty acid esters of the hydroxy fatty acid family. We previously uncovered their chemical structure and discussed their potential biological significance. We anticipate an increased need for SFAHFA measurements as markers of metabolic and inflammatory health. In this study, we synthesized sixty isomeric SFAHFAs by combining 12 hydroxy fatty acids (C16-C24) and five short-chain fatty acids (C2-C6) including a labelled internal standard. SFAHFA enrichment was achieved by solid-phase extraction and established a sensitive method for their quantitation by targeted LC-MS/MS. The method was applied to profile SFAHFAs in intestinal contents and fecal samples collected from rats fed a high-fat diet (HFD). The results demonstrated a significant decrease in SFAHFAs in the intestinal contents of the HFD group compared with the control group. The fecal time course (0-8 weeks) profile of SFAHFAs showed significant downregulation of acetic and propanoic acid esters in just 2 weeks after HFD administration. This study offers the first synthesis and quantitation method for SFAHFAs, demonstrating their potential use in elucidating SFAHFA sources, their role in various diseases, and potential biochemical signalling pathways.


Assuntos
Ésteres , 60705 , Ratos , Animais , Cromatografia Líquida/métodos , Conteúdo Gastrointestinal , Espectrometria de Massas em Tandem/métodos , Ácidos Graxos , Ácidos Graxos Voláteis
5.
Heliyon ; 9(12): e22959, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076063

RESUMO

The brain is a complex organ demonstrated by the occurrence of specific types of functional lipids. Despite some studies focusing on providing the animal brain lipid signature, there are limited studies focusing on the comprehensive and regiospecific characterization of multiple animal brain lipidome. Herein we characterized about 294 lipid molecular species from six different lipid classes in different portions of the brain after fixation from mammals of different habitats, fully-aquatic (n = 6), semi-aquatic (n = 6), and terrestrial (n = 4), using liquid chromatography-mass spectrometry. The untargeted brain lipid profiling revealed a significant difference in total lipid levels between fully-aquatic, semi-aquatic, and terrestrial mammals. The polyunsaturated fatty acids and cholesterol esters are abundant in brain tissue of semi-aquatic followed by fully-aquatic mammals whereas phosphatidylethanolamines are profoundly high in terrestrial species. The regiospecific analysis revealed a predominance of sphingolipids in all the groups but no significant differences were observed between the different portions of the brain such as the cerebellum, cortex, pons, spinal cord, and thalamus. Interestingly the multivariate analysis showed almost the same lipid compositions in the spinal cord and thalamus of terrestrial mammals. Overall, this is the first report to compare the comprehensive brain-lipidome among different mammalian groups inhabiting three distinct habitats. These results indicate that the brain lipid composition is specific to the animal habitat.

6.
Foods ; 12(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509876

RESUMO

Beans, a globally significant economic and nutritional food crop, are rich in polyphenolic chemicals with potential health advantages, providing high protein, fiber, minerals, and vitamins. However, studies on the global profiling of lipids in beans are limited. We applied a non-targeted lipidomic approach based on high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (HPLC/LTQ-Orbitrap-MS) to comprehensively profile and compare the lipids in six distinct bean cultivars, namely, adzuki red beans-adzuki cultivar (ARB-AC), adzuki red beans-Benidainagon cultivar (ARB-BC), adzuki red beans-Erimoshouzu cultivar (ARB-EC), soybean-Fukuyutaka cultivar 2021 (SB-FC21), soybean-Fukuyutaka cultivar 2022 (SB-FC22), and soybean-Oosuzu cultivar (SB-OC). MS/MS analysis defined 144 molecular species from four main lipid groups. Multivariate principal component analysis indicated unique lipid compositions in the cultivars except for ARB-BC and ARB-EC. Evaluation of the concentrations of polyunsaturated fatty acid to saturated fatty acid ratio among all the cultivars showed that SB-FC21 and SB-FC22 had the highest value, suggesting they are the most beneficial for health. Furthermore, lipids such as acyl sterol glycosides were detected and characterized for the first time in these bean cultivars. Hierarchical cluster correlations revealed the predominance of ceramides in ARB-EC, lysophospholipids in SB-FC21, and glycerophospholipids in SB-OC. This study comprehensively investigated lipids and their compositions in beans, indicating their potential utility in the nutritional evaluation of beans as functional foods.

7.
Mass Spectrom Rev ; 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37102760

RESUMO

Coronavirus disease 2019 (COVID-19) has emerged as a global health threat and has rapidly spread worldwide. Significant changes in the lipid profile before and after COVID-19 confirmed the significance of lipid metabolism in regulating the response to viral infection. Therefore, understanding the role of lipid metabolism may facilitate the development of new therapeutics for COVID-19. Owing to their high sensitivity and accuracy, mass spectrometry (MS)-based methods are widely used for rapidly identifying and quantifying of thousands of lipid species present in a small amount of sample. To enhance the capabilities of MS for the qualitative and quantitative analysis of lipids, different platforms have been combined to cover a wide range of lipidomes with high sensitivity, specificity, and accuracy. Currently, MS-based technologies are being established as efficient methods for discovering potential diagnostic biomarkers for COVID-19 and related diseases. As the lipidome of the host cell is drastically affected by the viral replication process, investigating lipid profile alterations in patients with COVID-19 and targeting lipid metabolism pathways are considered to be crucial steps in host-directed drug targeting to develop better therapeutic strategies. This review summarizes various MS-based strategies that have been developed for lipidomic analyzes and biomarker discoveries to combat COVID-19 by integrating various other potential approaches using different human samples. Furthermore, this review discusses the challenges in using MS technologies and future perspectives in terms of drug discovery and diagnosis of COVID-19.

8.
Sci Total Environ ; 874: 162365, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36822414

RESUMO

Aerosol liquid water (ALW) can serve as an aqueous-phase medium for numerous chemical reactions and consequently enhance the formation of secondary aerosols in a highly humid atmosphere. However, the aqueous-phase formation of secondary organic aerosols (SOAs) is not well understood in the Indian regions, particularly in tropical peninsular India. In this study, we collected total suspended particulate samples (n = 30) at a semiarid station (Ballari; 15.15°N, 76.93°E; 495 m asl) in tropical peninsular India during the winter of 2016. Homologous series of dicarboxylic acids (C2-C12), oxoacids (ωC2-ωC9), pyruvic acid (Pyr), and glyoxal (Gly) were determined by employing a water-extraction of aerosol and analyzed using capillary gas chromatography (GC). Results show that oxalic acid (C2) was the most abundant organic acid, followed by succinic (C4), malonic (C3), azelaic (C9), and glyoxylic (ωC2) or phthalic (Ph) acids. Total diacids-C accounted for 1.7-5.8 % of water-soluble organic carbon (WSOC) and 0.6-3.6 % of total carbon (TC). ALW, estimated from the ISORROPIA 2.1 model, showed a strong linear relationship with sulfate (SO42-), C2, C3, C4, ωC2, Pyr, and Gly. Based on molecular distribution, specific mass ratios (C2/C3, C2/C4, C2/Gly, and Ph/C9), linear relationships among the measured organic acids, ALW, organic (levoglucosan and oleic acid), and inorganic (SO42-) marker compounds, we emphasize that diacids and related organic compounds, especially C2, majorly form via aqueous-phase oxidation of precursor compounds including aromatic hydrocarbons (HCs) and unsaturated fatty acids (FAs) originated from biomass burning and combustion-related sources. The present study demonstrates that sulfate driven ALW largely enhances the formation of SOAs via the aqueous-phase reactions over tropical peninsular India during winter.

9.
Atherosclerosis ; 363: 30-41, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36455306

RESUMO

BACKGROUND AND AIMS: Myocardial infarction (MI) is a leading cause of heart failure (HF). After MI, lipids undergo several phasic changes implicated in cardiac repair if inflammation resolves on time. However, if inflammation continues, that leads to end stage HF progression and development. Numerous studies have analyzed the traditional risk factors; however, temporal lipidomics data for human and animal models are limited. Thus, we aimed to obtain sequential lipid profiling from acute to chronic HF. METHODS: Here, we report the comprehensive lipidome of the hearts from diseased and healthy subjects. To induce heart failure in mice, we used a non-reperfused model of coronary ligation, and MI was confirmed by echocardiography and histology, then temporal kinetics of lipids in different tissues (heart, spleen, kidney), and plasma was quantitated from heart failure mice and compared with naïve controls. For lipid analysis in mouse and human samples, untargeted liquid chromatography-linear trap quadrupole orbitrap mass spectrometry (LC-LTQ-Orbitrap MS) was performed. RESULTS: In humans, multivariate analysis revealed distinct cardiac lipid profiles between healthy and ischemic subjects, with 16 lipid species significantly downregulated by 5-fold, mainly phosphatidylethanolamines (PE), in the ischemic heart. In contrast, PE levels were markedly increased in mouse tissues and plasma in chronic MI, indicating possible cardiac remodeling. Further, fold change analysis revealed site-specific lipid biomarkers for acute and chronic HF. A significant decrease in sulfatides (SHexCer (34:1; 2O)) and sphingomyelins (SM (d18:1/16:0)) was observed in mouse tissues and plasma in chronic HF. CONCLUSIONS: Overall, a significant decreased lipidome in human ischemic LV and differential lipid metabolites in the transition of acute to chronic HF with inter-organ communication could provide novel insights into targeting integrative pathways for the early diagnosis or development of novel therapeutics to delay/prevent HF.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Humanos , Camundongos , Animais , Coração , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Ecocardiografia/efeitos adversos , Doença Crônica , Inflamação/metabolismo , Lipídeos/análise
10.
Antioxidants (Basel) ; 11(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36009257

RESUMO

Seaweeds are a good source of bioactive lipids and are known for their nutritional benefits, making them a valuable food source. Despite their dietary significance and nutritional importance, there are limited reports on comprehensive lipidome analysis of lipids with antioxidant properties. Therefore, this study aimed to compare the lipid profiles of five commonly consumed Japanese dietary seaweeds using non-targeted liquid chromatography/mass spectrometry (LC/MS). A total, of 304 molecular species from four major lipid classes were detected and characterized by MS/MS analysis. Multivariate statistical analysis revealed distinct lipid molecular compositions in kombu and sea mustard compared to hijiki, mozuku, and laver seaweeds. Kombu has been shown to contain large amounts of antioxidants, such as polyunsaturated fatty acids (PUFAs), and a high health promotion index compared to other seaweeds. Hierarchical cluster correlations indicated the predominance of glycerophospholipids (GPs) and glycerolipids (GLs) in sea mustard and kombu. As a result, dietary seaweeds have great potential as antioxidants and health-promoting foods for human consumption due to their high levels of PUFA-rich GPs and GLs. Unsaturated triacylglycerols are predominant in hijiki, whereas other health-beneficial lipids, such as monogalactosyldiacylglycerol and sulfoquinovosyl diacylglycerols, are predominant in sea mustard. This study provides a detailed characterization of lipids and their comparative fingerprints in seaweeds, demonstrating the potential use of dietary seaweeds in biotechnological and industrial applications involving the development of functional food products.

11.
Anal Bioanal Chem ; 414(22): 6419-6430, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841415

RESUMO

Short-chain fatty acids (SCFAs) are the end products of the fermentation of complex carbohydrates by the gut microbiota. Although SCFAs are recognized as important markers to elucidate the link between gut health and disease, it has been difficult to analyze SCFAs with mass spectrometry technologies due to their poor ionization efficiency and high volatility. Here, we present a novel and sensitive method for the quantification of SCFAs, including C2-C6 SCFAs and their hydroxy derivatives, by liquid chromatography/tandem mass spectrometry (LC-MS/MS) upon N,N-dimethylethylenediamine (DMED) derivatization with a run time of 10 min. Moreover, the quantification method of DMED-derivatized SCFAs in intestinal contents using isotope-labeled internal standards was also established. The method validation was performed by analyzing spiked intestinal samples; the limits of detection and quantification of SCFAs with this method were found to be 0.5 and 5 fmol, respectively; the recovery was greater than 80% and good linearity (0.9932 to 0.9979) of calibration curves was obtained over the range from 0.005 to 5000 pmol/µL; the intraday and interday precisions were achieved in the range of 1-5%. Furthermore, the validated method was applied to analyze SCFAs in the cecum and colon contents of mice infected with the influenza virus. The results showed that the concentration of most of the SCFAs tested here decreased significantly in a time-dependent manner after the infection, suggesting a possibility that SCFAs in intestinal samples could be used as severe disease markers. Overall, we here successfully developed a simple, fast, and sensitive method for SCFA analysis by LC-MS/MS combined with DMED derivatization. The method for the quantification of SCFAs will be a useful tool for both basic research and clinical studies.


Assuntos
Influenza Humana , Orthomyxoviridae , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Etilenodiaminas , Ácidos Graxos Voláteis/análise , Humanos , Camundongos , Espectrometria de Massas em Tandem/métodos
12.
Food Chem ; 393: 133402, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751211

RESUMO

Fish is an important nutrition source because its lipids, which are rich in ω-3 fatty acids, are beneficial for human health. However, studies focusing on their detection, composition, and nutritional value are limited. In this study, we applied a non-targeted lipidomic approach based on ultra-high performance liquid chromatography coupled with linear-ion trap-Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap-MS) to comprehensively profile, compare, and detect unknown lipids in eleven types of dietary fish. A total of 287 molecular species from five major lipid classes were characterized by MS/MS analysis. Multivariate principal component analysis revealed the distinct lipid composition in shishamo smelt and Japanese sardine compared to other fish types. The assessment of nutritional indices based on the levels of free fatty acid suggested that among the eleven fish types, shishamo smelt is highly beneficial for health. Further, lipids such as N-acyl lysophosphatidylethanolamine were detected and characterized for the first time in fish fillets. Hierarchical cluster correlations indicated the predominance of glycerophospholipids (GPs) and sphingolipids in sardine, whereas fatty acyls and triacylglycerols (TAGs) were predominant in shishamo smelt. The high levels of polyunsaturated fatty acid-enriched GPs and TAGs in dietary fish endow it with great potential as a health-promoting food for human consumption. This study offers a comprehensive analysis of lipids and their compositions in fish fillets, demonstrating their potential use in the nutritional assessment of functional foods.


Assuntos
Lipídeos , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Glicerofosfolipídeos/análise , Lipidômica , Lipídeos/química , Triglicerídeos
13.
Antioxidants (Basel) ; 11(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35204112

RESUMO

Lipid hydroperoxides (LOOH) are the initial products of the peroxidation of unsaturated lipids and play a crucial role in lipid oxidation due to their ability to decompose into free radicals and cause adverse effects on human health. Thus, LOOHs are commonly considered biomarkers of oxidative stress-associated pathological conditions. Despite their importance, the sensitive and selective analytical method for determination is limited, due to their low abundance, poor stability, and low ionizing efficiency. To overcome these limitations, in this study, we chemically synthesized eight fatty acid hydroperoxides (FAOOH), including FA 18:1-OOH, FA 18:2-OOH, FA 18:3-OOH, FA 20:4-OOH, FA 20:5-OOH, FA 22:1-OOH, FA 22:6-OOH as analytes, and FA 19:1-OOH as internal standard. Then, they were chemically labeled with 2-methoxypropene (2-MxP) to obtain FAOOMxP by one-step derivatization (for 10 min). A selected reaction monitoring assisted targeted analytical method was developed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The MxP-labelling improved the stability and enhanced the ionization efficiency in positive mode. Application of reverse-phase chromatography allowed coelution of analytes and internal standards with a short analysis time of 6 min. The limit of detection and quantification for FAOOH ranged from 0.1-1 pmol/µL and 1-2.5 pmol/µL, respectively. The method was applied to profile total FAOOHs in chemically oxidized human serum samples (n = 5) and their fractions of low and high-density lipoproteins (n = 4). The linoleic acid hydroperoxide (FA 18:2-OOH) and oleic acid hydroperoxide (FA 18:1-OOH) were the most abundant FAOOHs in human serum and lipoproteins. Overall, our validated LC-MS/MS methodology features enhanced detection and rapid separation that enables facile quantitation of multiple FAOOHs, therefore providing a valuable tool for determining the level of lipid peroxidation with potential diagnostic applications.

14.
Sci Rep ; 11(1): 20161, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635791

RESUMO

Influenza remains a world-wide health concern, causing 290,000-600,000 deaths and up to 5 million cases of severe illnesses annually. Noticing the host factors that control biological responses, such as inflammatory cytokine secretion, to influenza virus infection is important for the development of novel drugs. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite and has essential biological functions in inflammation. However, the kinetic effects of influenza virus infection on physiological S1P levels and their signaling in multiple tissues remain unknown. In this study, we utilized a mouse model intranasally infected with 50 or 500 plaque forming units (PFU) of A/Puerto Rico/8/34 (H1N1; PR8) virus to investigate how S1P levels and expression of its regulating factors are affected by influenza virus infection by the liquid-chromatography/mass spectrometry and real-time PCR, respectively. The S1P level was significantly high in the plasma of mice infected with 500 PFU of the virus than that in control mice at 6 day-post-infection (dpi). Elevated gene expression of sphingosine kinase-1 (Sphk1), an S1P synthase, was observed in the liver, lung, white adipose tissue, heart, and aorta of infected mice. This could be responsible for the increased plasma S1P levels as well as the decrease in the hepatic S1P lyase (Sgpl1) gene in the infected mice. These results indicate modulation of S1P-signaling by influenza virus infection. Since S1P regulates inflammation and leukocyte migration, it must be worth trying to target this signaling to control influenza-associated symptoms.


Assuntos
Regulação da Expressão Gênica , Vírus da Influenza A Subtipo H1N1/fisiologia , Fígado/metabolismo , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Espectrometria de Massas/métodos , Infecções por Orthomyxoviridae/metabolismo , Esfingosina/análogos & derivados , Aldeído Liases/genética , Aldeído Liases/metabolismo , Animais , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Fígado/virologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transdução de Sinais , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo
15.
Am J Physiol Heart Circ Physiol ; 321(3): H599-H611, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415189

RESUMO

Sphingosine-1-phosphate (S1P) is a bioactive mediator in inflammation. Dysregulated S1P is demonstrated as a cause of heart failure (HF). However, the time-dependent and integrative role of S1P interaction with receptors in HF is unclear after myocardial infarction (MI). In this study, the sphingolipid mediators were quantified in ischemic human hearts. We also measured the time kinetics of these mediators post-MI in murine spleen and heart as an integrative approach to understand the interaction of S1P and respective S1P receptors in the transition of acute (AHF) to chronic HF (CHF). Risk-free 8-12 wk male C57BL/6 mice were subjected to MI surgery, and MI was confirmed by echocardiography and histology. Mass spectrometry was used to quantify sphingolipids in plasma, infarcted heart, spleen of mice, and ischemic and healthy human heart. The physiological cardiac repair was observed in mice with a notable increase of S1P quantity (pmol/g) in the heart and spleen significantly reduced in patients with ischemic HF. The circulating murine S1P levels were increased during AHF and CHF despite lowered substrate in CHF. The S1PR1 receptor expression was observed to coincide with the respective S1P quantity in mice and human hearts. Furthermore, selective S1P1 agonist limited inflammatory markers CCL2 and TNF-α and accelerated reparative markers ARG-1 and YM-1 in macrophages in the presence of Kdo2-Lipid A (KLA; potent inflammatory stimulant). This report demonstrated the importance of S1P/S1PR1 signaling in physiological inflammation during cardiac repair in mice. Alteration in these axes may serve as the signs of pathological remodeling in patients with ischemia.NEW & NOTEWORTHY Previous studies indicate that sphingosine-1-phosphate (S1P) has some role in cardiovascular disease. This study adds quantitative and integrative systems-based approaches that are necessary for discovery and bedside translation. Here, we quantitated sphinganine, sphingosine, sphingosine-1-phosphate (S1P) in mice and human cardiac pathobiology. Interorgan S1P quantity and respective systems-based receptor activation suggest cardiac repair after myocardial infarction. Thus, S1P serves as a therapeutic target for cardiac protection in clinical translation.


Assuntos
Insuficiência Cardíaca/metabolismo , Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Esfingosina/análogos & derivados , Baço/metabolismo , Animais , Arginase/metabolismo , Células Cultivadas , Quimiocina CCL2/metabolismo , Humanos , Lectinas/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Regeneração , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
16.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299218

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with interesting physiological functions in mammals. Despite their structural diversity and links with nuclear factor erythroid 2-related factor 2 (NRF2) biosynthesis, FAHFAs are less explored as NRF2 activators. Herein, we examined for the first time the synthetic docosahexaenoic acid esters of 12-hydroxy stearic acid (12-DHAHSA) or oleic acid (12-DHAHOA) against NRF2 activation in cultured human hepatoma-derived cells (C3A). The effect of DHA-derived FAHFAs on lipid metabolism was explored by the nontargeted lipidomic analysis using liquid chromatography-mass spectrometry. Furthermore, their action on lipid droplet (LD) oxidation was investigated by the fluorescence imaging technique. The DHA-derived FAHFAs showed less cytotoxicity compared to their native fatty acids and activated the NRF2 in a dose-dependent pattern. Treatment of 12-DHAHOA with C3A cells upregulated the cellular triacylglycerol levels by 17-fold compared to the untreated group. Fluorescence imaging analysis also revealed the suppression of the degree of LDs oxidation upon treatment with 12-DHAHSA. Overall, these results suggest that DHA-derived FAHFAs as novel and potent activators of NRF2 with plausible antioxidant function.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Ácidos Graxos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleico/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Docosa-Hexaenoicos/farmacologia , Ésteres/síntese química , Ésteres/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Triglicerídeos/metabolismo , Células Tumorais Cultivadas
17.
J Am Soc Mass Spectrom ; 32(8): 2196-2205, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34170677

RESUMO

Fatty acid esters of hydroxy fatty acids (FAHFAs) are a new class of endogenous lipids with promising physiological functions in mammals. We previously introduced a new type of lipids to this family called short-chain fatty acid esters of hydroxy fatty acids (SFAHFAs), branching specific to the C2 carbon of a long-chain fatty acid (≥C20). In this study, we discovered a homologous series of SFAHFAs comprising C16-C26 hydroxy fatty acids esterified with short-chain fatty acids (C2-C5) in mouse colon contents. The detected SFAHFAs were characterized by high-resolution mass spectrometry with MSn analysis. The double-bond position of monounsaturated SFAHFAs was determined by the epoxidation reaction of samples with m-chloroperoxybenzoic acid and their MSn analysis. Further, the measurement of SFAHFA concentration in the colon contents of mice infected with influenza A/Puerto Rico/8/34 (H1N1; PR8) virus revealed a significant increase in their levels compared to native control. A strong correlation was observed between hydroxy fatty acid and SFAHFAs. Detection, characterization, and profiling of these new SFAHFA levels in relation with pandemic H1N1; PR8 influenza virus will contribute to the in-depth study of their function and metabolism.


Assuntos
Colo/química , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/química , Espectrometria de Massas/métodos , Infecções por Orthomyxoviridae/metabolismo , Animais , Clorobenzoatos/química , Colo/metabolismo , Colo/virologia , Compostos de Epóxi/química , Ésteres/análise , Ésteres/química , Ácidos Graxos Voláteis/metabolismo , Vírus da Influenza A Subtipo H1N1/patogenicidade , Masculino , Camundongos Endogâmicos C57BL , Análise Multivariada
18.
Food Res Int ; 144: 110325, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34053529

RESUMO

Lipids such as furan fatty acids (F-acids) are the valuable minor bioactive components of food such as fatty fish and plants. They are reported to have positive health benefits, including antioxidant and anti-inflammatory activities. Despite their importance, limited studies are focusing on F-acid determination in dietary seafood. This study aimed to identify and profile non-esterified F-acids and free fatty acids in total lipid extract of seafood such as shellfish and salmon. The lipidomic analysis using liquid chromatography-linear trap quadrupole-orbitrap mass spectrometry led to identifying seven types of free F-acids in shellfish (n = 5) and salmon (n = 4). The identified F-acids were confirmed by their high-resolution masses and acquired mass spectra. The relative concentrations of F-acids in shellfish range from 0.01 to 10.93 mg/100 g of the fillet, and in salmon, 0.01 to 14.21 mg/100 g of the fillet. The results revealed the highest abundance of F-acids in Sakhalin surf clam, Japanese scallop, and a fatty salmon trout. Besides, relative levels of saturated, monounsaturated, and polyunsaturated fatty acids (PUFAs) in these seafoods were compared with each other, suggesting basket clams and salmon trout to have significantly higher levels of PUFAs. The dietary seafoods enriched with F-acids and PUFAs may have possible health benefits. Hence, the applied technique could be a promising tool for rapid detection and analysis of non-esterified fatty acids in food.


Assuntos
Ácidos Graxos , Salmão , Animais , Cromatografia Líquida de Alta Pressão , Ácidos Graxos não Esterificados , Furanos , Lipidômica , Alimentos Marinhos/análise , Frutos do Mar
19.
Metabolites ; 10(10)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050007

RESUMO

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are novel endogenous lipids with important physiological functions in mammals. We previously identified a new type of FAHFAs, named short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs), with acetyl or propyl esters of hydroxy fatty acids of carbon chains, C ≥ 20. However, sensitive determination of SFAHFAs is still a challenge, due to their high structural similarity and low abundance in biological samples. This study employs one-step chemical derivatization following total lipid extraction using 2-dimethylaminoethylamine (DMED) for enhanced detection of SFAHFAs. The labeled extracts were subjected to ultrahigh performance liquid chromatography coupled to linear ion trap quadrupole-Orbitrap mass spectrometry (UHPLC/LTQ-Orbitrap MS). Our results demonstrated that the detection sensitivities of SFAHFAs increased after DMED labeling, and is highly helpful in discovering six additional novel SFAHFAs in the cecum and colon contents of WKAH/HKmSlc rats fed with normal and high-fat diet (HFD). The identified DMED labeled SFAHFAs were characterized by their detailed MS/MS analysis, and their plausible fragmentation patterns were proposed. The concentrations of SFAHFAs were significantly reduced in the cecum of HFD group compared to the control. Hence, the proposed method could be a promising tool to apply for the enhanced detection of SFAHFAs in various biological matrices, which in turn facilitate the understanding of their sources, and physiological functions of these novel lipids.

20.
Rapid Commun Mass Spectrom ; 34(17): e8831, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415683

RESUMO

RATIONALE: Fatty acid esters of hydroxy fatty acids (FAHFAs) are recently discovered endogenous lipids with outstanding health benefits. FAHFAs are known to exhibit antioxidant, antidiabetic and anti-inflammatory properties. The number of known long-chain FAHFAs in mammalian tissues and dietary resources increased recently because of the latest developments in high-resolution tandem mass spectrometry techniques. However, there are no reports on the identification of short-chain fatty acid esterified hydroxy fatty acids (SFAHFAs). METHODS: Intestinal contents, tissues, and plasma of rats fed with high-fat diet (HFD) and normal diet (ND) were analyzed for fatty acids, hydroxy fatty acids, and FAHFAs using ultra-high-performance liquid chromatography (UHPLC) and linear trap quadrupole-Orbitrap mass spectrometry (LTQ Orbitrap MS) with negative heated electrospray ionization. RESULTS: Untargeted analysis of total lipid extracts from murine samples (male 13-week-old WKAH/HKmSlc rats) led to the identification of several new SFAHFAs of acetic acid or propanoic acid esterified long-chain (>C20)-hydroxy fatty acids. Furthermore, MS3 analysis revealed the position of the hydroxyl group in the long-chain fatty acid as C-2. The relative amounts of SFAHFAs were quantified in intestinal contents and their tissues (Cecum, small intestine, and large intestine), liver, and plasma of rats fed with HFD and ND. The large intestine showed the highest abundance of SFAHFAs with a concentration range from 0.84 to 57 pmol/mg followed by the cecum with a range of 0.66 to 28.6 pmol/mg. The SFAHFAs were significantly altered between the HFD and ND groups, with a strong decreasing tendency under HFD conditions. CONCLUSIONS: Identification of these novel SFAHFAs can contribute to a better understanding of the chemical and biological properties of individual SFAHFAs and their possible sources in the gut, which in turn helps us tackle the role of these lipids in various metabolic diseases.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos , Espectrometria de Massas/métodos , Animais , Dieta Hiperlipídica , Ésteres/análise , Ésteres/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Intestinos/química , Fígado/química , Masculino , Camundongos , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...